ProtaStructure ${ }^{\circ}$ ProtaSteel ${ }^{\circ}$ ProtaDetails ${ }^{\circ}$ ProtaBIM ${ }^{\text { }}$

ProtaStructure Design Guide

Column Design to BS 8110-1-1997

Version 4.0
$16^{\text {th }}$ June 2022

Please contact us for your training and technical support queries
asiasupport@protasoftware.com
globalsupport@protasoftware.com

Limitation of Responsibilities

Intellectual
Property

Prota shall not be held responsible for any losses caused by documentation, software, or usage errors.

In addition to Prota License Agreement Terms, it is the responsibility of the user

- to check of results generated by documentation and software,
- make sure that the users of the software and their supervisors have adequate technical capabilities,
- make sure that the software is properly used per the reference manual and documentation,

ProtaStructure is a registered trademark of Prota Software Inc. and all intellectual property rights belong to Prota Software Inc. Documentation, training, and reference manuals and any program component can not be copied, distributed, and used in violation of license agreement.

Trademarks
ProtaStructure ${ }^{\oplus}$, ProtaDetails ${ }^{\oplus}$, ProtaStee ${ }^{\oplus}$ ve ProtaBIM ${ }^{\star}$ are registered trademarks of Prota Software Inc. Prota logo is a trademark of Prota Software Inc.

Table of Contents

Introduction 4
The BS8110 Column Design Process 5
Worked Examples 8
The Design Model 8
Column Design Settings 9
Braced Rectangular Column Example 11
Performing the Design 11
Cross check of the above solution 18
Bi - Axial Design Method Example 21
Braced Circular Column Example 23
Unbraced Circular Column Example 27
Cross check of the above solution 31
Thank You 34

Introduction

By default, ProtaStructure designs columns bent about a single axis, or bent about both axes using the code clauses given in BS 8110-1:1997: Part 1 Section 3.8.

The following table summarises the various stages of the BS8110 column design process:

Step	Calculation	Clause
1	Braced or unbraced?	3.8 .1 .5
2	Calculate effective height using Part 2 of the code	3.8 .1 .6
3	Check slenderness	3.8 .1 .3
4	Classify as short or slender	3.8 .1 .3
5	If slender - calculate Madd	3.8 .3 .1
6	Calculate minimum moments	3.8 .2 .4
$7 \mathrm{7b}$	If braced - calculate design moments	3.8 .3 .2
8	If unbraced - calculate design moments equivalent uni-axial design moments (If using the Bi-Axial design method -skip this stage)	3.8 .3 .7
9	Member Design	3.8 .4 .5
2	3.8 .4	

As indicated in the table, the program provides two design methods.

The default method applies Cl 3.8.4.5 to convert bi-axial moments into an equivalent uni-axial design moment.

Alternatively, if the bi-axial design method is selected, the bi-axial moments calculated in step 7 are fed directly into the member design stage and a more rigorous solution technique developed from first principles is adopted. This can produce some economy, however because the neutral axis will lie on an incline the results of the design process will be more difficult to cross check.

For poly-line columns, as shown below, the bi-axial design method will always be adopted.

The choice of design method is set via the Column \& Shearwall Parameters settings dialog shown below.

The BS8110 Column Design Process

1. Braced or unbraced - $\mathrm{Cl} 3 \cdot 8.1 .5$

Globally, columns will be considered as braced if this option has been selected in the Building Parameters. Individual columns can have their braced/unbraced status modified within the Column Interactive Design, via the Slenderness tab as shown below:

For walls, the braced/unbraced status is applied in the same way as it is for columns. However, it should be noted that walls can always be considered as braced along their major axis (i.e dir 1).

2. Calculate effective height -Cl 3.8.1.6

The effective height is determined from the equation:
$l_{e}=\beta l_{o}$

A rigorous assessment of the effective length is undertaken using the formulae given in 2.5 of BS 81102:1985. Perhaps surprisingly, this can often result in a greater effective length than is determined from the Tables 3.19 and 3.20 of BS 8110-1:1997.

The beta value determined by part 2 can be edited and replaced by the value from the tables if required.
3. Check slenderness limits -Cl 3.8 .1 .7 \& 3.8.1.8

The slenderness limits for columns, l_{0}, should not exceed 60 times the smaller dimensions of a column. However, the slenderness limit of unbraced columns, l_{0}, should satisfy the followings:
$l_{o} \leq 60 b$ or $\frac{100 b^{2}}{h} ;$ whichever is less. equation 31
In equation $31, h$ and b are respectively the larger and smaller dimensions of the column.
4. Classify as short or slender- Cl 3.8.1.3

Columns and walls are considered as short when both the ratios $l_{\text {ex }} / h$ and $l_{\text {ey }} / b$ are less than 15 (braced) and 10 (unbraced), otherwise they are slender.
5. If slender - calculate M _add- Cl 3.8.3.1

In order to calculate the additional moment induced in the column it is required that factor K be determined. Although the code allows for K to be conservatively taken as 1.0, ProtaStructure calculates K using the equation 33 in the code:
$K=\frac{N_{u z}-N}{N_{u z}-N_{b a l}} \leq 1$ equation 33

The calculation of $\mathrm{As}_{\text {required }}$ is itself an iterative process and K is re-calculated at every iteration.

The following assumptions are applied to ensure the calculation of K remains slightly conservative.

Calculation of N_{uz} :

$N_{u z}=0.45 f_{c u} A_{c}+0.87 f_{y} A_{s c}$

Equation has two parts:

- Steel $\left(0.87 f_{y} A_{s c}\right)$ - In this equation, ProtaStructure uses $\mathrm{A}_{\text {sc }}$ required. (since it is logical that we should be able to fail a section by providing more steel than it is required)
- Concrete $\left(0.45 f_{c u} A_{c}\right)$ - The net concrete is used in this equation.

Calculation of $\mathrm{N}_{\mathrm{bal}}$:

The code indicates that this is based on $0.25 f_{c u} b d$ ($d=$ eff depth). However, with the aim of keeping $N_{\text {bal }}$ large (hence making the calculation of K more conservative), actually uses the gross concrete area here.

6. Calculate minimum moments - Cl 3.8.2.4

The minimum design moment is calculated in both directions taking the design ultimate axial load acting at a minimum eccentricity as per Cl 3.8.2.4.

7. Design Moments

a. If braced, calculate design moments about each axis -Cl 3.8 .3 .2

The design moment is calculated in both directions as the greatest of:
i. M_{2};
ii. $\mathrm{M}_{\mathrm{i}}+\mathrm{M}_{\text {add }}$;
iii. $\quad M_{1}+M_{\text {add }} / 2$;
iv. $\mathrm{e}_{\min } \mathrm{N}$.
where M_{1}, M_{2} and $M_{\text {add }}$ are as defined in Figure 3.20.
$\mathrm{M}_{\mathrm{i}}=0.4 \mathrm{M}_{1}+0.6 \mathrm{M}_{2} \geq 0.4 \mathrm{M}_{2}$
b. If unbraced, calculate design moments about each axis - Cl 3.8.3.2

The design moment is calculated in both directions as per Figure 3.21.

8. Calculate equivalent uni-axial design moments - Cl 3.8.4.5

Because there will always be at least a minimum moment acting in both directions, for rectangular columns the design moment will always be determined from Equations 40 and 41 in the code.

For $M_{x} / h^{\prime} \geq M_{y} / b^{\prime}, M_{x}^{\prime}=M_{x}+\beta \frac{h^{\prime}}{b^{\prime}} M_{y}$

Equation 40

For $M_{x} / h^{\prime} \geq M_{y} / b^{\prime}, M_{y}^{\prime}=M_{y}+\beta \frac{h^{\prime}}{b^{\prime}} M_{x}$

Equation 41

Where h^{\prime} and b^{\prime} are shown in Figure 3.22;
b is the coefficient obtained from Table 3.22;

For circular columns, the moments in the two directions are resolved.
$M=\sqrt{M_{x}{ }^{2}+M_{y}{ }^{2}}$

9. Member Design - Cl 3.8.4

With the design axial load and design moment established, the program determines the required steel area using the BS8110 stress block. The neutral axis of the cross section is determined and a bar size and spacing obtained to provide sufficient moment capacity.

Each design combination is considered and the one that results in the largest steel area requirement is selected as being critical.

If the minimum area of steel is satisfactory for every combination, the program will record combination 1 as being critical, (irrespective of the relative magnitude of loads in each combinations)

Three methods of bar selection are available:

- Fixed bar layout - The bar locations are defined by the user and the program determines the bar size required.
- Bar Spacing Maximisation - The program determines the bar size and spacing with the aim to maximise the spacing. This is normally the preferred option.
- Bar Size Minimisation - The program determines the bar size and spacing with the aim to minimise the bar size.

The maximum axial load is checked against Cl 3.8 .4 .3 or Cl 3.8.4.4. The program defaults to the more conservative capacity determined by Cl 3.8 .4 .3 . The clause used can be changed via the BS8110 tab of the column design settings as shown:

Worked Examples

The Design Model

The example model Doc_Example_4 is opened and saved to a new name (so as not to destroy the original example). The copied model is then adjusted so that its storey height is increased to 5.5 m and it is then re-analysed. In this model the steel grade is 460 and the steel material factor is 1.15.

The value of steel material factor is taken from the BS 8110-1-1997: Table 2.2. The value of steel material factor can be changed in the Rebar Properties if the users wish to overwrite the default value.

Bar diameters of 12 mm are used. The minimum link diameter is set to 10 mm . Note however, the actual design process would be identical irrespective of which steel grade and material factor and bar diameters are used.

Column Design Settings

The column design settings initially adopted are as shown:

Design Parameters:

Steel Bars - Layout/Selection:

Steel Bars - Longitudinal Steel:

Steel Bars - Links:

Braced Rectangular Column Example

Column 1C8 will be used to demonstrate the design process for a rectangular column.

- Column dimension in direction $2, \mathrm{~b} 2=500 \mathrm{~mm}$
- column dimension in direction $3, b 3=250 \mathrm{~mm}$

The clear height of column in the two directions takes account of the beams framing into the top of the column.

- $\mathrm{L}_{\mathrm{o}} 2=5500 \mathrm{~mm}-500 \mathrm{~mm}=5000 \mathrm{~mm}$
- $\mathrm{L}_{\mathrm{o}} 3=5500 \mathrm{~mm}-400 \mathrm{~mm}=5100 \mathrm{~mm}$

As shown on the design screen above, if only 3 bars are placed in the x direction the default clear bar spacing limit of 200 mm (as specified in the Column Design Settings) would be slightly exceeded. In the worked examples the Max. Column Steel Bar Spacing has been relaxed to 205 mm in order that the above bar layout can be used.

Performing the Design

Click the Design button to perform the calculations. This will design the column for all the highlighted design combinations. Design combination 2 is found to be critical and is highlighted in red in the table as shown below.

Each stage of this design process will now be examined in detail.

1. Braced or unbraced -Cl 3.8.1.5

In this example the column has been defined as braced in both directions. This can be confirmed by clicking on the Slenderness tab.

2. Calculate effective height -Cl 3.8.1.6

The effective length factors 2 and 3 that have been calculated are also displayed on the Slenderness tab as shown.

These effective length factors are calculated as follows:

In Direction 2:

Beam stiffness at top of the column
$\mathrm{L}=5500 \mathrm{~mm}, \mathrm{~b}=250 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}$
$k_{b 1}=b \times d^{3} /(12 \times L)=473484.85 \mathrm{~mm}^{3}$
Column stiffness
$k_{c 1}=b_{2} \times b_{1}^{3} /\left(12 \times L_{o 1}\right)=520833.33 \mathrm{~mm}^{3}$
Calculation using the formulae given in BS 8110-2:1985 Cl 2.5
$\alpha_{c, 2}=\frac{k_{c 1}}{k_{b 1}}=1.10$
$\alpha_{c, 1}=1.0($ Fixed based is defined in this example)
$\alpha_{c, \text { min }}=1.0\left(\right.$ lesser of $\alpha_{c, 2}$ or $\left.\alpha_{c, 1}\right)$
Equation 3 Effective Length Factors, $\beta=\left[0.7+0.05\left(\alpha_{c, 1}+\alpha_{c, 2}\right)\right]=\mathbf{0 . 8 0 5}$
Equation 4 Effective Length Factors, $\beta=\left[0.85+0.05\left(\alpha_{c, \min }\right)\right]=\mathbf{0 . 9}$
$\beta=0.805$ (whichever is lesser)

In Direction 3:

Beam stiffness at top of the column
$\mathrm{L}=4250 \mathrm{~mm}, \mathrm{~b}=250 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$
$k_{b 1}=b \times d^{3} /(12 \times L)=313725.49 \mathrm{~mm}^{3}$
Column stiffness
$k_{c 1}=b_{1} \times b_{2}^{3} /\left(12 \times L_{o 2}\right)=127655.23 \mathrm{~mm}^{3}$
Calculation using the formulae given in BS 8110-2:1985 Cl 2.5
$\alpha_{c, 2}=\frac{k_{c 1}}{k_{b 1}}=0.407$
$\alpha_{c, 1}=1.0($ Fixed based is defined in this example)
$\alpha_{c, \min }=0.407\left(\right.$ lesser of $\alpha_{c, 2}$ or $\left.\alpha_{c, 1}\right)$
Equation 3 Effective Length Factors, $\beta=\left[0.7+0.05\left(\alpha_{c, 1}+\alpha_{c, 2}\right)\right]=\mathbf{0 . 7 7 0}$
Equation $4 \quad$ Effective Length Factors, $\beta=\left[0.85+0.05\left(\alpha_{c, \min }\right)\right]=\mathbf{0 . 8 7}$
$\beta=0.770$ (whichever is lesser)

Effective Member Length

$l_{e 2}=\beta_{d i r-2} \times l_{o 2}=4025 \mathrm{~mm}$
$l_{e 3}=\beta_{d i r-3} \times l_{o 3}=3927 \mathrm{~mm}$
3. Check Slenderness limits - Cl 3.8.1.7 \& 3.8.1.8
$l_{o} \leq 60 b=15000 \mathrm{~mm}, o k!$
4. Classify as short or slender - Cl 3.8 .1 .3

The classification is shown on the Column Reinforcement Design dialog.

```
Slender Column...
    Le2/b2 = 8.1 < 15.0
    Le3/b3 = 15.7> 15.0 !!!
```


5. If slender - Calculate $\mathrm{M}_{\mathrm{add}}-\mathrm{Cl}$ 3.8.3.1

Depending on the classification the \mathbf{b}_{a} and $\mathrm{M}_{\text {add }}$ values have been calculated accordingly and are displayed on the Slenderness tab.

In Direction 2

$\beta_{a}=\frac{1}{2000}\left(\frac{l_{e}}{b^{\prime}}\right)^{2}$

Equation 34

Column is not slender in direction 2 , hence $\mathrm{M}_{\text {add }, 33}=0 \mathrm{kNm}$

In Direction 3

$\beta_{a}=\frac{1}{2000}\left(\frac{l_{e}}{b^{\prime}}\right)^{2}$

Equation 34

$\beta_{a}=\frac{1}{2000}\left(\frac{3927}{250}\right)^{2}=0.123$
Column is slender in direction 3 , hence $\mathrm{M}_{\text {add }, 22}$ must be calculated:
$K=\frac{N_{u z}-N}{N_{u z}-N_{b a l}} \leq 1$

- Applied Axial Load, N= 157.6 kN
- Column Dimension (in direction which under consideration), $b_{3}=500 \mathrm{~mm}$
- Column Width, $\mathrm{b}_{2}=250 \mathrm{~mm}$
- Concrete Grade, $\mathrm{f}_{\mathrm{cu}}=40 \mathrm{~N} / \mathrm{mm}^{2}$
- Steel Grade, $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$
- Material factor for steel, $s=1.150$
- Area of steel required, $\mathrm{As}_{\text {req }}=636.08 \mathrm{~mm}^{2}$

```
\(N_{u z}=0.45 f_{c u} A_{c}+0.87 f_{y} A_{s c}\)
    \(=0.45 \times 40 \times\left[\left(b_{2} \times h\right)-A s_{r e q}\right]+0.87 \times f_{y} \times A s_{r e q}=\mathbf{2 2 6 0 . 6 9} \mathbf{k N}\)
```

$N_{b a l}=0.25 f_{c u} b h=1250 \boldsymbol{k N}$.
$K=\frac{N_{u z}-N}{N_{u z}-N_{b a l}}=2.08, \quad$ hence $K=1$
$\alpha_{u}=\beta K b_{2}=30.75 \mathrm{~mm}$
Equation 32
$M_{a d d}=N \alpha_{u}=4.84 \mathrm{kNm}$
Equation 35
Hence, $M_{\text {add }}$ about direction 2 (in direction-3) is 4.84 kNm
6. Calculate minimum moments -Cl 3.8 .2 .4

These are shown on the Column Reinforcement Design dialog.

Minimum eccentricity $2=\min (0.05 \times \mathrm{h}, 20 \mathrm{~mm})=20.0 \mathrm{~mm}$

Minimum eccentricity $3=\min (0.05 \times b, 20 \mathrm{~mm})=12.5 \mathrm{~mm}$
$\mathrm{M}_{\text {min }, 33}=\mathrm{N} \times 20 \mathrm{~mm}=3.15 \mathrm{kNm}$
$\mathrm{M}_{\text {min, } 22}=\mathrm{N} \times 12.5 \mathrm{~mm}=1.97 \mathrm{kNm}$
7. Calculate design moments about each axis -Cl 3.8.3.2

These are also shown on the Column Reinforcement Design dialog.

Design Moments...
Md-22 $=-16.2 \mathrm{kN} . \mathrm{m}$
$\mathrm{Md}-33=53.6 \mathrm{kN} . \mathrm{m}$

In direction 2 (About direction - 3):

- Smaller end moment, $\mathrm{M}_{1}=-26.2 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=53.6 \mathrm{kNm}$
- $M_{i}=0.4 \mathrm{M}_{1}+0.6 \mathrm{M}_{2} \geq 0.4 \mathrm{M}_{2}=21.68 \mathrm{kNm} \geq 21.44 \mathrm{kNm}$
- Hence, $\mathrm{M}_{\mathrm{i}}=21.68 \mathrm{kNm}$
- $\quad M_{d, 33}$ eff is the greatest of:
a) $\mathrm{M}_{2}=53.6 \mathrm{kNm}$
b) $M_{i}+M_{\text {add }}=21.68 \mathrm{kNm}$
c) $\mathrm{M}_{1}+\mathrm{M}_{\text {add }} / 2=21.68 \mathrm{kNm}$
d) $\mathrm{E}_{\text {min }} \mathrm{N}=3.15 \mathrm{kNm}$
$M_{d, 33 \text { eff }}=53.6 \mathrm{kNm}$.

In direction 3 (About direction - 2):

- Smaller end moment, $\mathrm{M}_{1}=8.1 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=-16.2 \mathrm{kNm}$
- $M_{i}=0.4 M_{1}+0.6 M_{2} \geq 0.4 M_{2}=-6.48 \mathrm{kNm} \geq-6.48 \mathrm{kNm}$
- Hence, $M_{i}=-6.48 \mathrm{kNm}$
- $M_{d, 22}$ eff is the greatest of:
a) $M_{2}=-16.2 \mathrm{kNm}$
b) $M_{i}+M_{\text {add }}=-4.56 \mathrm{kNm}$
c) $\mathrm{M}_{1}+\mathrm{M}_{\text {add }} / 2=9.09 \mathrm{kNm}$
d) $\mathrm{E}_{\min } \mathrm{N}=1.97 \mathrm{kNm}$
$M_{d, 22 \text { eff }}=-16.2 \mathrm{kNm}$.

8. Calculate equivalent uni-axial design moments -Cl 3.8.4.5

The effective design moment is calculated from Equations 40 and 41 .

```
Design Moments...
    Md-22 = -16.2 kN.m
    Md-33 }=53.6\textrm{kN}.\textrm{m
    Md-eff = 86.9 kN.m
    N/bhFcu =0.042 ->> Beta = 0.95
```

- Longitudinal bar diameter $=12 \mathrm{~mm}$
- Cover $=20 \mathrm{~mm}$
- Links $=10 \mathrm{~mm}$
- $M_{x}=M_{d, 22 \text { eff }}=16.2 \mathrm{kNm}$
- $M_{y}=M_{d, 33 \text { eff }}=53.6 \mathrm{kNm}$
- $h^{\prime}=b_{2}$ - cover - links - diameter $/ 2=214 \mathrm{~mm}$
- $b^{\prime}=b_{1}-$ cover - links - diameter $/ 2=464 \mathrm{~mm}$
- $\mathrm{M}_{\mathrm{x}} / \mathrm{h}^{\prime}=75.7 \mathrm{kN}, \mathrm{M}_{\mathrm{y}} / \mathrm{b}^{\prime}=115.52 \mathrm{kN}$,
- $M_{x} / h^{\prime}<M_{y} / b^{\prime}$, hence $M_{y}^{\prime}=M_{y}+\beta \frac{b^{\prime}}{h^{\prime}} M_{x} \quad$ equation 41
- $\frac{N}{b h f_{c u}}=0.042$, hence $\beta=0.95$ (interpolated from TABLE 3.22)
- $M_{y}^{\prime}=M_{y}+\beta \frac{b^{\prime}}{h^{\prime}} M_{x}=86.97 \mathrm{kNm}$

9. Member Design - Cl 3.8.4

Design forces:

- $\mathrm{N}=151.8 \mathrm{kN}$
- $M_{y}{ }^{\prime}=86.8 \mathrm{kNm}$
- $M_{x}{ }^{\prime}=0 \mathrm{kNm}$

Solution determined by ProtaStructure:

Y-bar (mm)	81.1
Alpha (drc)	0.00
Ast (mm2)	

Required	As $=617.09 \mathrm{~mm} 2(\% 0.49)$
Minimum	As $=500.00 \mathrm{~mm} 2(\% 0.4)$
Supplied	As $=678.58 \mathrm{~mm} 2(\% 0.54) \geq$ As,min

- Distance to neutral axis-Y bar $=81.1 \mathrm{~mm}$
- Area of steel required, $\mathrm{As}_{\text {required }}=617.09 \mathrm{~mm}^{2}$
- Area of steel provided, As $_{\text {provided }}=678.58 \mathrm{~mm}^{2}$

Reinforcement in Section

- $\mathrm{X} 1=$ cover + links + diameter $/ 2=36 \mathrm{~mm}$
- $X 2=500 \mathrm{~mm} / 2=250 \mathrm{~mm}$
- $\mathrm{X} 3=500 \mathrm{~mm}-$ cover - links - diameter $/ 2=464 \mathrm{~mm}$

Y-Bar > X1, hence bars at X1 are in compression.

Calculate maximum axial load - Cl 3.8.4.3 or Cl 3.8.4.4:

Dir	Anl: Top	Anl: Bot	Minimum
$\mathrm{N}(\mathrm{kN})$	131.4	157.6	
2 M33 (kN.m)	53.6	-26.2	3.2
3 M22 (kN.m)	-16.2	8.1	-2.0
N -max (kN)	$1726.0>$ Nd $\ldots . O K . .$.		

In this example, the design ultimate axial load is determined using Cl . 3.8.4.3

$$
N_{\max }=\left(0.4 \times f_{c u} \times b_{1} \times b_{2}\right)+\left(0.75 \times A s_{\text {provided }} \times f_{y}\right)=\mathbf{1 7 2 6} \boldsymbol{k} \boldsymbol{N}>\boldsymbol{N}_{\boldsymbol{d}}, \boldsymbol{o k}!
$$

Cross check of the above solution

The solution can be cross checked using two basic equations given in standard texts. For example: W.H. Mosley and J.H. Bungey, Reinforced Concrete Design, (MacMillan)

1. Resolving forces vertically
$\mathrm{N}=\mathrm{F}_{\mathrm{cc}}+\mathrm{F}_{\mathrm{ST}}+\mathrm{F}_{\mathrm{sc}}$
Where:

- F_{cc} is Concrete Compressive Strength
- $\mathrm{F}_{\text {st }}$ is Steel Tensile Force
- Fsc is Steel Compressive Force

Bars in tension are fully stressed, hence Total Tensile force in bars at X2 and X3.
$F_{S T}=-4 \times \frac{A s_{r e q}}{6} \times \frac{460 \mathrm{~N} / \mathrm{mm}^{2}}{1.15}=-164.56 \mathrm{kN}$
Compressive force in concrete, using the BS8110 rectangular stress.
$F_{C C}=\frac{0.67 f_{c u}}{1.5} \times(0.9 \times Y-\operatorname{bar} \times h)=244.52 \mathrm{kN}$
Total compressive force in bars at $\mathrm{X} 1, \mathrm{~F}_{\mathrm{SC}}=\mathrm{N}-\mathrm{F}_{\mathrm{ST}}-\mathrm{F}_{\mathrm{CC}}=157.3-(-164.56)-(244.52)=\underline{77.34 \mathrm{kN}}$

2. Taking moments about mid-depth of section (should equate to zero):

The applied moment $\mathrm{M}_{\mathrm{y}}{ }^{\prime}$ must be balanced by the moment of resistance of the forces developed within the cross section.

- Distance to centre of concrete compression force $X_{C C}=\frac{500 \mathrm{~mm}}{2}-0.9 \times \frac{Y-\text { bar }}{2}=213.5 \mathrm{~mm}$
- Distance to centre of steel compression force $X_{S C}=\frac{500 \mathrm{~mm}}{2}-\mathrm{X} 1=214 \mathrm{~mm}$
- Distance to centre of steel tension force $X_{S T}=\left(\frac{X 3+X 2}{2}\right)-\frac{500 \mathrm{~mm}}{2}=107 \mathrm{~mm}$
$M_{y}^{\prime}-\left(X_{c c} \times F_{c c}\right)+\left(X_{S T} \times F_{S T}\right)-\left(X_{s c} \times F_{s c}\right)=0.31 \mathrm{kNm}$
The right hand side of the above equation should equate to zero to within an acceptable tolerance. To determine if this result is OK, recalculate the actual value of M_{y} ' required for this to be the case and then compare the two.
actual $M_{y}^{\prime}=\left(X_{c c} \times F_{c c}\right)-\left(X_{S T} \times F_{S T}\right)+\left(X_{s c} \times F_{s c}\right)+0.5=86.79 \mathrm{kNm}$
$M_{y}^{\prime} /$ actual $M_{y}^{\prime}=86.8 \mathrm{kNm} / 86.79 \mathrm{kNm}=1$, ok!
The above cross check shows that if the As required was actually the amount provided then the required capacity is just sufficient.

In all cases $\mathrm{As}_{\text {prov }}$ will exceed $\mathrm{As}_{\text {req }}$ to some degree. ProtaStructure reports the ratio: $\mathrm{As} \mathrm{s}_{\text {req }} / \mathrm{As}$ prov as the utilisation ratio. Utilisation Ratio $\mathrm{As}_{\text {req }} / A s_{\text {prov }}=0.91$

It is important to appreciate that 91% utilisation does not mean that 9% more loads can be added. As is shown on the interaction diagram for this column, a great deal more axial load could be added.

Bi-Axial Design Method Example

From the Column Design Settings dialog, change the design method to bi-axial.

Then re-design column 1C8 once more.

Column Reinforcement Design

Material: C30 / Grade 460 (Type 2)

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design	
$\mathrm{N}(\mathrm{kN})$	131.4	157.6			157.6	
2 M33 (kN.m)	53.6	-26.2	3.2	0.805	53.6	
3 M22 (kN.m)	-16.2	8.1	-2.0	0.770	-16.2	
$\mathrm{N}-$ max (kN)	1726.0	d ...OK...				

It is important to note that design stages 1 to 7 are identical to the previous example, hence the effective design moments about each axis are unchanged:

In direction 2 (About direction - 3):

- Smaller end moment, $\mathrm{M}_{1}=-26.2 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=53.6 \mathrm{kNm}$
- $\mathrm{M}_{\mathrm{i}}=0.4 \mathrm{M}_{1}+0.6 \mathrm{M}_{2} \geq 0.4 \mathrm{M}_{2}=\underline{21.68 \mathrm{kNm} \geq 21.44 \mathrm{kNm}}$
- Hence, $\mathrm{M}_{\mathrm{i}, 2}=21.68 \mathrm{kNm}$
- $M_{d, 33}$ eff is the greatest of:
a) $\mathrm{M}_{2}=53.6 \mathrm{kNm}$
b) $M_{i}+M_{\text {add }}=21.68 \mathrm{kNm}$
c) $M_{1}+M_{\text {add }} / 2=21.68 \mathrm{kNm}$
d) $\mathrm{E}_{\min } \mathrm{N}=3.04 \mathrm{kNm}$
$M_{d, 33 \text { eff }}=53.6 \mathrm{kNm}$.

In direction 3 (About direction - 2):

- Smaller end moment, $\mathrm{M}_{1}=8.1 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=-16.2 \mathrm{kNm}$
- $M_{i}=0.4 M_{1}+0.6 \mathrm{M}_{2} \geq 0.4 \mathrm{M}_{2}=\underline{-6.48 \mathrm{kNm} \geq-6.48 \mathrm{kNm}}$
- Hence, $M_{i}=-6.48 \mathrm{kNm}$
- $M_{d, 22 \text { eff }}$ is the greatest of:
a) $M_{2}=-16.2 \mathrm{kNm}$
b) $M_{i}+M_{\text {add }}=-1.81 \mathrm{kNm}$
c) $\mathrm{M}_{1}+\mathrm{M}_{\text {add }} / 2=10.435 \mathrm{kNm}$
d) $\mathrm{E}_{\text {min }} \mathrm{N}=1.9 \mathrm{kNm}$
$M_{d, 22 \text { eff }}=16.2 \mathrm{kNm}$.

Instead of converting these to a uni-axial design moment (as per stage 8), an exact solution is determined using the bi-axial moments.

The result is that the area of steel required drops from $636.08 \mathrm{~mm}^{2}$ to $296.43 \mathrm{~mm}^{2}$.

Thus, this design method can obviously be seen to provide a more economical solution. The drawback is that because the neutral axis is no longer parallel to either face of the column, verification is more difficult. The cross checks required do not lend themselves to hand calculation.

Braced Circular Column Example

From the Column Design Settings dialog, change the design method to BS8110-Cl.3.8.4.5.
Column 1C12 will be used to demonstrate the design process for a circular column.
Column Reinforcement Design
Material: C30 / Grade 460 (Type 2)

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design	
$\mathrm{N}(\mathrm{kN})$	236.9	273.2			273.2	
2 M33 (kN.m)	0.0	0.0	-5.5	0.784	0.0	
3 M 22 (kN.m)	80.1	-39.7	5.5	0.812	80.1	
N -max (kN)	2619.8	d ...OK...				

Click on the Parameters button and change to fixed bar layout.

This will force the design to adopt the number of bars shown in the 'Qty' cell of the above table. In this example we will use 8 bars in the design, (Qty = 8). When the design is performed, the bar sizes will be adjusted to obtain an economic solution based on this layout.

Column Diameter, D = 500 m

The clear height of column in the two directions takes account of the beams framing into the top of the column.
$\mathrm{L}_{\mathrm{o} 2}=5500 \mathrm{~mm}-500 \mathrm{~mm}=5000 \mathrm{~mm}$
$\mathrm{L}_{03}=5500 \mathrm{~mm}-400 \mathrm{~mm}=5100 \mathrm{~mm}$

1. Braced or Unbraced - Cl 3.8.1.5

Steel Bars	Links	Shear Design	Slenderness	Settings	
-Bracing			Edited \square -	Slenderness	
\checkmark Dir-2: Braced				$\beta \mathrm{a}(2)$	0.02
\checkmark Dir-3: Braced				$\beta a(3)$	0.019
-Effective Length Factors			Edited \square	M-add(33):	$0.0 \mathrm{kN} . \mathrm{m}$
	0.784			M-add(22):	$0.0 \mathrm{kN} . \mathrm{m}$
	0.8				

All the columns in this building should be considered as braced. If the column is designed as such, the effective length factors in the two directions are calculated as:
$\beta_{2}=0.784$
$\beta_{3}=0.812$
2. Calculate effective height -Cl 3.8.1.6

The values of b_{2} and b_{2} are calculated in the same way as in the previous rectangular column example. The full calculations will therefore not be repeated here.

The effective height of the column is calculated as:
$l_{e, 1}=\beta_{2} l_{o 2}=3920 \mathrm{~mm}$
$l_{e, 2}=\beta_{3} l_{o 3}=4141 \mathrm{~mm}$
3. Check Slenderness limits - Cl 3.8.1.7 \& 3.8.1.8
$60 \times D=30000 \mathrm{~mm}, \quad 5000$ or $5100<30000 \mathrm{~mm}$, ok!
4. Classify as short or slender - Cl 3.8.1.3

$$
\begin{aligned}
& \text { Short Column... } \\
& \text { Le2/b2 }=7.8<15.0 \\
& \text { Le3/b3 }=8.3<15.0
\end{aligned}
$$

1C12 was classified as short column
5. If slender - Calculate $\mathrm{Madd}-\mathrm{Cl}$ 3.8.3.1

Slenderness	
$\beta a(2)$	0.02
$\beta a(3)$	0.019
M-add(33):	
M-add(22):	$0.0 \mathrm{kN.m}$
	$0.0 \mathrm{kN.m}$

In this example, the round column was classified as short, hence no additional moments in direction 2 and 3.
6. Calculate minimum moments -Cl 3.8 .2 .4

```
Material: C30 / Grade 460 (Type 2)
```

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design
$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6
2 M33 (kN.m)	0.0	0.0	-5.6	0.784	0.0
3 M 22 (kN.m)	81.2	-40.2	5.6	0.812	81.2
N -max (kN)	2619.8	...OK...			

- Applied Axial Load, N=278.6 kN
- Minimum eccentricity $=\min (0.05 \times d, 20 \mathrm{~mm})=20.0 \mathrm{~mm}$
- $\mathrm{M}_{\min }=\mathrm{N} \times 20 \mathrm{~mm}=5.57 \mathrm{kNm}$

When the column was braced, combination 1 was identified as the critical combination.
7. Calculate design moments about each axis -Cl 3.8.3.2

Combination=1						
Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design	
	$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6
2	$\mathrm{M} 33(\mathrm{kN} . \mathrm{m})$	0.0	0.0	-5.6	0.784	0.0
3	$\mathrm{M} 22(\mathrm{kN} . \mathrm{m})$	81.2	-40.2	5.6	0.812	81.2
N-max (kN)	2619.8	$>$ Nd \ldots OK...				

In direction 3 (About direction-2):

- Smaller end moment, $\mathrm{M}_{1}=-40.2 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=81.2 \mathrm{kNm}$

As the column is short the effective moment is simply greatest of:

- $\mathrm{M}_{2}=81.2 \mathrm{kNm}$
- $\mathrm{M}_{\text {min }}=5.6 \mathrm{kNm}$
$M_{d, 33 \text { eff }}=81.2 \mathrm{kNm}$.

8. Calculate equivalent uni-axial design moments -Cl 3.8 .4 .5

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design
$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6
2 M33 (kN.m)	0.0	0.0	-5.6	0.784	0.0
3 M 22 (kN.m)	81.2	-40.2	5.6	0.812	81.2
$\mathrm{N}-$ max (kN)	2619.8	d ...OK...			

$M_{x}=M_{d, 33 \text { eff }}=0 \mathrm{kNm}$.
$M_{y}=M_{d, 22 \text { eff }}=81.2 \mathrm{kNm}$.
$\mathrm{M}_{\mathrm{x}}^{\prime}=\sqrt{\left(\mathrm{M}_{\mathrm{x}}\right)^{2}+\left(\mathrm{M}_{\mathrm{y}}\right)^{2}}=81.2 \mathrm{kNm}$
9. Member Design - Cl 3.8 .4

Solution determined by ProtaStructure:

- Distance to neutral axis-Y bar $=105.7 \mathrm{~mm}$
- Area of steel required, $\mathrm{As}_{\text {required }}=363.47 \mathrm{~mm}^{2}$
- Area of steel provided, $\mathrm{As}_{\text {provided }}=904.78 \mathrm{~mm}^{2}$
- No. of provided reinforcement $=8$ bars

Before cross checking this solution for equilibrium, we will first make the column unbraced.

Unbraced Circular Column Example

The previous calculations are now repeated with the column specified as unbraced.

1. Braced or Unbraced - Cl 3.8.1.5

To change the column to unbraced, check 'Edited' box and uncheck the 'Dir 2' and 'Dir 3' braced boxes on the slenderness tab as shown below. Then, click the Design button:

Steel Bars	Links	Shear Design	Slenderness	Settings	
\square Dir-3: Braced				$\beta a(3)$	0.019
- Effective Length Factors				M-add(33):	$10.9 \mathrm{kN} . \mathrm{m}$
$\beta-2:$				M-add(22):	$12.9 \mathrm{kN} . \mathrm{m}$
$\beta-3:$	1.3				

When unbraced, the effective length factors in the two directions for this column change to:
$\beta_{2}=1.252$
$\beta_{3}=1.336$
2. Calculate effective height -Cl 3.8.1.6

When considered unbraced, the column effective height is calculated as:
$l_{e, 2}=\beta_{2} l_{o 2}=6260 \mathrm{~mm}$
$l_{e, 3}=\beta_{3} l_{o 3}=6810 \mathrm{~mm}$
3. \quad Check Slenderness limits - Cl 3.8.1.7 \& 3.8.1.8
$60 \times D=30000 \mathrm{~mm}, \quad 5000$ and $5100<30000 \mathrm{~mm}$, ok!
4. Classify as short or slender - Cl 3.8.1.3

Slender Column...
 Le2/b2 $=12.5>10.0$!!!
 Le3/b3 $=13.6>10.0$!!!

When 1 C 12 is unbraced, it is classified as slender column.
5. If slender - Calculate $\mathrm{M}_{\text {add }}-\mathrm{Cl}$ 3.8.3.1

$\left[\right.$| Slenderness | |
| ---: | :--- |
| $\qquad \beta a(2)$ | 0.02 |
| $\beta a(3)$ | 0.019 |
| M-add(33): | |
| M-add(22): | $10.7 \mathrm{kN} . \mathrm{m}$ |
| | $12.7 \mathrm{kN} . \mathrm{m}$ |
| | |
| | |

$$
\begin{array}{ll}
\text { Required } & \text { As }=558.98 \mathrm{~mm} 2(\% 0.28) \\
\text { Minimum } & A s=785.40 \mathrm{~mm} 2(\% 0.4) \\
\text { Supplied } & A s=904.78 \mathrm{~mm} 2(\% 0.46) \geq \text { As,min }
\end{array}
$$

In Direction 2
$\beta_{a(2)}=\frac{1}{2000}\left(\frac{l_{e}}{b^{\prime}}\right)^{2}=0.078$
Equation 34

In Direction 3

$\beta_{a(3)}=\frac{1}{2000}\left(\frac{l_{e}}{b^{\prime}}\right)^{2}=0.093 \quad$ Equation 34
Column is slender in direction 2 and 3 , hence $M_{\text {add, } 1}$ and $M_{\text {add, } 2}$ must be calculated:
$K=\frac{N_{u z}-N}{N_{u z}-N_{b a l}} \leq 1$

- Applied Axial Load, $\mathrm{N}=\underline{278.6 \mathrm{kN}}$
- Area of the column section, $A=196349.54 \mathrm{~mm}^{2}$
- Concrete Grade, $\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
- Steel Grade, $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$
- Material factor for steel, $s=1.150$
- Area of steel required, $\mathrm{As}_{\text {req }}=568.49 \mathrm{~mm}^{2}$

```
\(N_{u z}=0.45 f_{c u} A_{c}+0.87 f_{y} A_{s c}\)
\[
=0.45 \times 30 \times\left[(A)-A s_{r e q}\right]+0.87 \times f_{y} \times A s_{r e q}=\mathbf{2 8 7 0 . 5 4} \mathbf{~ k N}
\]
\(N_{b a l}=0.25 f_{c u} A=1472.62 \mathbf{k N}\).
```

$K=\frac{N_{u z}-N}{N_{u z}-N_{b a l}}=1.85, \quad$ hence $\mathrm{K}=\mathbf{1}$
$\alpha_{u 1}=\beta_{a(2)} K D=39 \mathbf{m m}$
Equation 32
$M_{a d d, 33}=N \alpha_{u 1}=10.87 \mathrm{kNm}$
Equation 35
$\alpha_{u 2}=\beta_{a(3)} K D=46.5 \mathrm{~mm}$
Equation 32
$M_{a d d, 22}=N \alpha_{u 2}=12.95 \mathrm{kNm}$
Equation 35

Hence, additional moment about direction - 3 is 10.87 kNm and direction -2 is 12.95 kNm .
6. Calculate minimum moments -Cl 3.8 .2 .4

Material: C30 / Grade 460 (Type 2)

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design
$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6
1 M22 (kN.m)	0.0	0.0	-5.6	1.252	0.0
2 M11 (kN.m)	81.2	-40.2	5.6	1.336	94.8
$\mathrm{N}-\max (\mathrm{kN})$	2657.5	d ...OK...			

Minimum eccentricity $=\min (0.05 \times D, 20 \mathrm{~mm})=20.0 \mathrm{~mm}$
$M_{\text {min }}=N \times 20 \mathrm{~mm}=5.57 \mathrm{kNm}$
7. Calculate unbraced design moments about each axis -Cl 3.8.3.2

Material: C30 / Grade 460 (Type 2)

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design	
$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6	
2 M33 (kN.m)	0.0	0.0	-5.6	1.252	0.0	
3 M22 (kN.m)	81.2	-40.2	5.6	1.336	94.8	
N -max (kN)	2657.5	...OK...				

In direction 3 (About direction - 2):

- Smaller end moment, $\mathrm{M}_{1}=-40.2 \mathrm{kNm}$
- Larger end moment, $\mathrm{M}_{2}=81.2 \mathrm{kNm}$
- $M_{d, 22}$ eff is the greatest of:
a) $\mathrm{M}_{2}+\mathrm{M}_{\text {add }, 22}=94.15 \mathrm{kNm}$
b) $M_{1}+M_{\text {add }, 22}=-27.25 \mathrm{kNm}$
c) $\mathrm{E}_{\text {min }} \mathrm{N}=5.57 \mathrm{kNm}$
$M_{d, 22 \text { eff }}=94.15 \mathrm{kNm}$.

8. Calculate equivalent uni-axial design moments -Cl 3.8.4.5

Dir	Anl: Top	Anl: Bot	Minimum	Beta	Design
$\mathrm{N}(\mathrm{kN})$	242.3	278.6			278.6
2 M33 (kN.m)	0.0	0.0	-5.6	1.252	0.0
3 M 22 (kN.m)	81.2	-40.2	5.6	1.336	94.8
N -max (kN)	2657.5	d ...OK...			

$M_{x}=M_{d, 22 \text { eff }}=94.8 \mathrm{kNm}$
$M_{y}=M_{d, 33 \text { eff }}=0 \mathrm{kNm}$

$$
M=\sqrt{\left(M_{x}^{2}+M_{y}^{2}\right)}=94.8 \mathrm{kNm}
$$

9. Member Design - Cl 3.8.4

Design forces:

- $\quad N=278.6 \mathrm{kN}$
- $M=94.8 \mathrm{kNm}$

Solution determined by ProtaStructure:

Required	As $=566.80 \mathrm{~mm} 2(\% 0.29)$
Minimum	As $=785.40 \mathrm{~mm} 2(\% 0.4)$
Supplied	$A s=904.78 \mathrm{~mm} 2(\% 0.46) \geq$ As,min

- Distance to neutral axis Y-bar $=112.6 \mathrm{~mm}$
- Area of steel required, $\mathrm{As}_{\text {required }}=566.80 \mathrm{~mm}^{2}$
- Area of steel provided, As $_{\text {provided }}=904.78 \mathrm{~mm}^{2}$
- No. of reinforcement provided $=8$ bars

Cross check of the above solution

Reinforcement in the section:

C40 / Grade 460 (Type 2)

- Diameter, $\mathrm{D}=500 \mathrm{~mm}$
- Bar diameter, d=12 mm
- Cover $=20 \mathrm{~mm}$
- Links $=10 \mathrm{~mm}$

Bar distances from mid depth:

- $\mathrm{X} 1=\mathrm{D} / 2-$ cover - links - bar diameter $/ 2=214 \mathrm{~mm}$
- $\mathrm{X} 2=\sqrt{\left(\frac{X 1^{2}}{2}\right)}=151.32 \mathrm{~mm}$
- $\mathrm{X} 3=0$
- $\quad \mathrm{X} 4=\mathrm{X} 2=151.32 \mathrm{~mm}$
- $\mathrm{X} 5=\mathrm{X} 1=214 \mathrm{~mm}$

Y-bar $=112.8>(250 \mathrm{~mm}-\mathrm{X} 2=98.68 \mathrm{~mm})$, hence bars at X 1 and X 2 are in compression

1. Resolving forces vertically
$\mathrm{N}=\mathrm{F}_{\mathrm{cc}}+\mathrm{F}_{\mathrm{ST}}+\mathrm{F}_{\mathrm{sc}}$

Where:

- F_{cc} is Concrete Compressive Strength
- $\mathrm{F}_{\text {st }}$ is Steel Tensile Force
- Fsc is Steel Compressive Force

Bars in tension are fully stressed, hence Total Tensile force in bars at $\mathrm{X} 3, \mathrm{X} 4$ and X 5 .
$F_{S T}=-5 \times \frac{A s_{r e q}}{n B a r} \times \frac{460 \mathrm{~N} / \mathrm{mm}^{2}}{1.15}=-142.12 \mathrm{kN}$
Tensile force per bar at X3, X4 and X5
$F_{S T b a r}=\frac{F_{S T}}{5}=-28.42 \mathrm{kN}$

The area of concrete in compression (the blue shaded area above) is determined from the equation:
$R=D / 2=250 \mathrm{~mm}$
$r=R-Y b a r=137.2 \mathrm{~mm}$
$\cos \frac{\theta}{2}=\frac{r}{R}$
$\theta=113.27^{\circ}$
$A=\frac{R^{2}}{2}\left(\frac{\pi}{180} \theta-\sin \theta\right)=33071.28 \mathrm{~mm}^{2}$
Compressive force in concrete, using the BS8110 rectangular stress:
$F_{C C}=\frac{0.67 f_{c u}}{1.5} \times(0.9 \times A)=398.84 k N$

Total compressive force in bars at X1 and X2:

$F_{\mathrm{SC}}=\mathrm{N}-\mathrm{F}_{\mathrm{ST}}-\mathrm{F}_{\mathrm{CC}}=278.6-(-142.12)-(398.84)=\underline{21.88 \mathrm{kN}}$

Compressive force per bar at X1 and X2:

$F_{\text {scbar }}=F_{\text {sc }} / 3=7.29 \mathrm{kN}$
2. Taking moments about mid-depth of section (should equate to zero):

For this hand calculation it has been assumed that the centre of concrete compression force is at 2 Y $\mathrm{bar} / 3$ from the top of the section. The software would of course perform a rigorous calculation to
determine the exact position of the centre of concrete compression force. Distance to centre of concrete compression force.

- Distance to centre of concrete compression force $\mathrm{X}_{\mathrm{CC}}=R-\frac{2 \times \text { Ybar }}{3}=174.8 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Actual } M_{y}^{\prime}=\left(X_{c c} \times F_{c c}\right)-\left(2 \times X 4 \times F_{\text {STbar }}\right)-\left(X 5 \times F_{\text {STbar }}\right)+\left(X 1 \times F_{\text {SCbar }}\right)+\left(2 \times X 2 \times F_{\text {SCbar }}\right) \\
&=\mathbf{8 8 . 1 7 \mathbf { k N m }}
\end{aligned}
$$

$M_{y}^{\prime} /_{\text {actual } M_{y}^{\prime}}=94.8 \mathrm{kNm} / 88.17 \mathrm{kNm}=\mathbf{1 . 0 8}, \quad$ ok!
Utilisatio Ratio $=A s_{\text {req }} / A s_{\text {prov }}=\mathbf{0 . 6 3}, \quad o k!$

Thank You...

Thank you for choosing the ProtaStructure Suite product family.

It is our top priority to make your experience excellent with our software technology solutions.
Should you have any technical support requests or questions, please do not hesitate to contact us at all times through globalsupport@protasoftware.com and asiasupport@protasoftware.com

Our dedicated online support center together with our responsive technical support team is available to help you get the most out of Prota's technology solutions.

The Prota Team

